The potential role of green tea catechins in the prevention of the metabolic syndrome - a review.
نویسندگان
چکیده
The metabolic syndrome (MetS) represents an emerging health burden for governments and health care providers. Particularly relevant for prevention and early management of MetS are lifestyle conditions including physical activity and the diet. It has been shown that green tea, when consumed on a daily basis, supports health. Many of the beneficial effects of green tea are related to its catechin, particularly (-)-epigallocatechin-3-gallate (EGCG), content. There is conclusive evidence from in vitro and animal studies which provide the concepts for underlying functional mechanisms of green tea catechins and their biological actions. An increasing number of human studies have explored the effects of green tea catechins on the major MetS conditions such as obesity, type-2 diabetes and cardiovascular risk factors. This article provides a comprehensive overview of the human studies addressing the potential benefits of green tea catechins on the MetS. The number of human studies in this field is still limited. However, the majority of human epidemiological and intervention studies demonstrate beneficial effects of green tea or green tea extracts, rich in EGCG on weight management, glucose control and cardiovascular risk factors. The optimal dose has not yet been established. The current body of evidence in humans warrants further attention. In particular, well-controlled long-term human studies would help to fully understand the protective effects of green tea catechins on parameters related to the MetS.
منابع مشابه
Green Tea (Camellia sinensis) Supplementation to Diabetic Rats Improves Serum and Hepatic Oxidative Stress Markers
Diabetes is one of the most common metabolic disorders and is interrelated to oxidative stress-induced diseases. According to the role of dietary antioxidants in control and prevention of diabetes, this study was aimed to evaluate the effect of green tea extract on serum glucose levels and serum and hepatic total antioxidant capacity (TAC) and lipid (MDA) in diabetic rats. Experimental diabetes...
متن کاملGreen Tea (Camellia sinensis) Supplementation to Diabetic Rats Improves Serum and Hepatic Oxidative Stress Markers
Diabetes is one of the most common metabolic disorders and is interrelated to oxidative stress-induced diseases. According to the role of dietary antioxidants in control and prevention of diabetes, this study was aimed to evaluate the effect of green tea extract on serum glucose levels and serum and hepatic total antioxidant capacity (TAC) and lipid (MDA) in diabetic rats. Experimental diabetes...
متن کاملMultifunctional effects of green tea catechins on prevention of the metabolic syndrome.
Tea catechins reduce serum cholesterol concentrations and suppress postprandial hypertriacylglycerolemia in experimental animals and humans. These effects are mainly ascribed to the gallate esters of catechins, (-)-epicatechin gallate (ECG) and (-)-epigallocatechin gallate (EGCG). During pasteurization of tea drinks, tea catechins are epimerized to so-called heat-treated tea catechins such as (...
متن کاملGreen Tea Supplement in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis
Background: Polycystic ovary syndrome (PCOS) is a common metabolic disorder among age reproductive women. It could result in anovulation, infertility insulin resistance, and obesity. Dietary intake especially antioxidant components may improve some disorders. The current study is the first meta-analysis to assess the effect of green tea, a source of antioxidants, on anthropometric and insulin a...
متن کاملSoy Isoflavone Genistein Is a Potential Agent for Metabolic Syndrome Treatment: A Narrative Review
Metabolic syndrome has a high prevalence (about 22.4% in adult individuals) in developed countries. Inflammation due to obesity and fat accumulation is the most important factor in the progression of metabolic syndrome. In cells which have a receptor for insulin hormone, inflammatory mediators target the insulin signaling pathway and cause insulin resistance. Peroxisome proliferator-activated r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Phytochemistry
دوره 70 1 شماره
صفحات -
تاریخ انتشار 2009